
DDObjects
Version 1.0.2

© 2007 Stefan Meisner

www.delphi-online.at

http://www.delphi-online.at/

© 2007 Stefan Meisner

www.delphi-online.at

stefan.meisner@gmx.net

This software is distributed as shareware. It is not free. You may use the software for a trial

period of thirty (30) days, at no cost to you to determine if it fits your needs. If you decide to use the

software, you shall register it and pay the applicable registration fee. The Shareware (restricted)
version without source may be freely distributed, as long as no fees are charged and original

packaging, the above copyright notice and documentation are retained.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-

AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

mailto:stefan.meisner@gmx.net
http://www.delphi-online.at/

Table of Contents

Introduction.. 4

Installation.. 5

System Requirements.. 5

Shareware Version without Sources.. 5

Registered Version incl. Sources... 5

Tutorials and Implementation... 6

First Steps... 8

Implementing Callbacks... 13

Callbacks and Asynchronous Callbacks.. 15

Asynchronous Calls... 16

Type Rich Exception Handling... 18

Using Sessions.. 19

Records, Sets and Enumerations.. 20

Implementing IDDOPersistent.. 21

Events, Properties and API.. 24

TDDOListener.. 24

TDDORequester.. 26

TDDODataGrid.. 28

TDDOTimer... 29

TDDOThreadStringList.. 29

Miscellaneous.. 29

Command Line Tools... 30

Common Persistent Classes.. 32

TDDOPersistentStrings.. 32

TDDOPersistentList... 32

Known Issues... 33

Limitations of the Shareware (unregistered) Version... 33

DDObjects fails to compile in C++ Builder 2006.. 33

Frequently Asked Questions.. 34

About DDObjects... 34

Installation... 34

Programming with DDObjects.. 35

General Questions... 36

History of Releases.. 37

Final Notes... 40

Introduction

DDObjects is a remoting framework to be used with Borland Delphi and C++ Builder which

originally has been started out of personal interest for technologies like DCOM, RMI, Corba etc. A

main goal while developing DDObjects has not been only to keep the code one has to implement

in order to utilize DDObjects as simple as possible but also very close to Delphis usual style of

event-driven programming.

DDObjects doesn't mimic other implementations as DCOM or Corba, which are generalized

to a least common denominator but makes use of Delphis rich type system including Objects, Ex-

ceptions, Records, Sets and Enumerations.

The initial version was developed in November 2003 to be used in an internal accounting

system connected to several Oracle databases and serves about 50 clients executing as much as

500,000 calls each day and is running smoothly since then. After spending more than 2 years in

my drawer I started with some first extensions which have been published in February 2006. After

being involved into a larger .NET 2.0 project, I continued the development: Version 1.0 saw the

light of the day on the 6th of march 2007.

DDObjects supports

• Remote method calls

• Server callbacks

• Asynchronous calls

• Asynchronous callbacks

• Stateful and -less objects

• Client sessions

• Sets and Enumerations

• RecordTypes

• Compression

Contributors

Many thanks to Indra Gunawan for his suggestions as well as to Markus Landwehr who has

provided the code which has been adapted within the unit DDOFirewall.pas. Many thanks to

Primož Gabrijelčič (http://http://17slon.com/gp) who provided some code to keep compatibility with

Delphi 5. Special thanks go to Hallvard Vassbotn who has provided a very fast replacement for

StringReplace. DDObjects includes zlib 1.2.3. See http://www.zlib.net for more details.

http://www.zlib.net/
http://http://17slon.com/gp

Installation

System Requirements

DDObjects supports Delphi 5 to 7, Delphi 2005 and 2006 as well as C++ Builder 6 and 2006.

DDObjects is running on Windows NT 4, Windows 2000, Windows XP and above. Windows 98 is

only partially supported (see FAQ for more details).

Shareware Version without Sources

Unzip the package to a folder of your choice. The folder contains a subfolder Lib which con-

tains the precompiled DCU respectively OBJ files for each supported version of Delphi and C++

Builder. Add the appropriate folder to your library path and install the contained package

dclDDObjects within your IDE selecting Component|Install Packages. A new tabsheet labelled

delphi-online.at, containing seven new components, should appear.

If you have any problems in proceeding these steps, check your library- as well as your win-

dows search path which should include the directory which contains the package files.

Registered Version incl. Sources

The steps to install DDObjects are the same as described above. If you would like to build

DDObjects yourself you'll find the complete source code within the sub folder Source. The sub

folder packages contains the package files. Users who like to use DDObjects support for TDataSet

should open the file DDObjects.inc and activate the conditional define DDODataSet which is

disabled by default to support users of Delphi's personal editions.

Users of C++ Builder 2006 should read “DDObjects fails to compile in C++ Builder 2006”

within the chapter “Known Issues” before building and installing the packages.

Tutorials and Implementation

DDO Wizard
Before starting with the tutorials a short introduction to the wizard, which will be your primary

tool when developing with DDObjects should be given. To start the wizard select File|New|Other,

switch to the tab labelled delphi-online.at and select DDOWizard. The wizard will be shown as in

this screenshot:

To define a new class, its methods and parameters click on the button labelled Add in the

upper panel. If the class node is selected within the tree a new method will be added. If one of the

methods is selected, a new parameter node will be added which is shown on in this screenshot:

You can enter the name of the method or parameter, select whether the parameter is an in,

out or var parameter and select its type. Some types as e.g. arrays and records need further

refinement. Additional fields to enter that information will be shown as needed. Nodes can be

deleted, moved up and down using the buttons labelled Delete, Up and Down.

Before starting source code generation, the class definition needs to be stored to disk. Click

on the button Store in order to do so. The file will be named as the class e.g. DDOClass.xml in this

case. To change an already defined class, you can load the definition, remove, change or add

parameters and methods as appropriate and store the changes to file.

Only after the definition has been stored the button Source will be enabled!

The final step before leaving the wizard is the source code generation which can be started

clicking on the button labelled Source. Although source code generation usually should be done

within a moment the wizard shows each step it does execute in the lower memo as shown in the

this screenshot:

This does finish this short introduction to the wizard. Most of the settings which do appear

above (TimeOut, Async etc.) are being described within the next tutorials and therefore are not

mentioned here. If you do have any question or suggestions about this or any other tutorial don't

hesitate to send an eMail to stefan.meisner@gmx.net

mailto:stefan.meisner@gmx.net

First Steps

Defining the Interface

We'll start defining the interface for the class we would like to implement. For the sake of sim-

plicity we'll define three simple methods only:

 procedure GetQuote(out Quote: String);
 procedure GetTime(out DateTime: TDateTime);
 procedure GetVarParam(var AString: String);

Select File|New|Other, select the tabsheet labelled 'delphi-online.at' and double click on the

contained icon (DDOWizard) to run the integrated wizard. Within that wizard, provide an appropri-

ate name to be used for the class name (we'll assume the name 'DemoClass' as an example) and

add these methods along with their parameters and types as shown in the following screen shot.

Leave the checkboxes labelled 'Stateful', 'Cached', 'Callback and 'Async' unchecked and

don't change the value for 'TimeOut'. These settings are not relevant at the moment and will be

discussed in an advanced tutorial. Select a directory where this information (expressed in XML)

and the generated sources should be stored.

Generating Sources

Click on the button labelled 'Sources' and wait a few seconds. You'll be notified as soon as

the wizard has completed its task. The wizard will generate two units whose names will depend on

the class name: uDemoClass_Proxy.pas will be included within the client, while the unit

uDemoClass_Stub.pas will be included within the server. These units contain the classes that im-

plement the previously defined interface.

Creating the Client

We'll build the client first as this is fairly straightforward. Create a new application and con-

struct the main form's GUI. Add the unit which has been generated earlier

(uDemoClass_Proxy.pas) to the application. Select the tabsheet labelled 'delphi-online.at' within

the component-palette and drop a DDORequester on your form.

Some settings and events of the component (e.g. server and port) can be configured using

the Object Inspector. We'll leave all settings at their default values and do not add any events for

now. Create an instance within the OnCreate handler of the form, and free it within OnDestroy:

 procedure TClientMainForm.FormCreate(Sender: TObject);
 begin
 FDemoClass := TDemoClass.Create(DDORequester1);
 end;

 procedure TClientMainForm.FormDestroy(Sender: TObject);
 begin
 FreeAndNil(FDemoClass);
 end;

All that's left to do is to use this instance within the application. The button labelled GetQuote

in the above screenshot has an OnClick event handler assigned that calls a method of the object.

This call will be sent over the network and executed by the server (which we'll create in the next

section); the server then sends the result back to us. All this is done within a single line of code:

 procedure TClientMainForm.ButtonGetQuoteClick(Sender: TObject);
 var
 AQuote: String;
 begin
 FDemoClass.GetQuote(AQuote);
 MemoResult.Text := AQuote;
 end;

Creating the Server

Let's start creating the server. This is not much more complicated than creating the client.

However, advanced issues and scenarios dealing with multi-threading can be a challenging subject

of their own. Although the server does use several threads to perform its task, this tutorial does not

deal with these issues.

Create a new application and construct the main form's GUI. Once you are done add the unit

which has been created by the wizard (uDemoClass_Stub.pas) to the application and use it within

the form's code. Select the tabsheet labelled 'delphi-online.at' from the component palette and drop

a DDOListener onto the form:

Open the unit uDemoClass_Stub.pas and locate the following snippet of code. Note that the

class inherits from the abstract class TDemoClass_Stub which is defined and (partly) implemented

within the same unit.

 // **
 // Use this comment block as a template to implement the stub
 // **
 {
 TDemoClass = class(TDemoClass_Stub)
 public
 procedure GetQuote(out Quote: String); override;
 procedure GetTime(out DateTime: TDateTime); override;
 procedure GetVarParam(var AString: String); override;
 procedure Initialize; override;
 destructor Destroy; override;
 end;
 }

Copy the provided code to the form unit, press Ctrl+Shift+c to perform code completion, and

implement the methods as appropriate. Note that instead of overriding the constructor, the class of-

fers a virtual method called Initialize which should be used instead. The destructor can be overrid-

den as usual:

 procedure TDemoClass.Initialize;
 begin
 inherited;
 FQuotes := TStringList.Create;

 FQuotes.LoadFromFile('Quotes.txt');
 end;

 destructor TDemoClass.Destroy;
 begin
 FreeAndNil(FQuotes);
 inherited;
 end;

Once a client calls the method GetQuote on the proxy (as shown in the client code above),

the call will be sent over the network, received by the DDOListener component, forwarded to the

implementation in TDemoClass and finally sent back to the client which receives the result. You do

not need to implement any specific code for this, as it happens automatically.

 procedure TDemoClass.GetQuote(out Quote: String);
 begin
 // The "+1" causes an exception to be raised from time to time.
 // This is intentional to show how DDObjects handles exceptions.
 Quote := FQuotes[Random(FQuotes.Count + 1)];
 end;

Some simple steps are missing before we can use the server. At first, the DDOListener we've

dropped onto the form needs to know about the newly created class. We do this by registering it:

 procedure TServerMainForm.FormCreate(Sender: TObject);
 begin
 DDOListener1.RegisterClass(TDemoClass);
 end;

Finally the server needs to be activated:

 procedure TServerMainForm.SpeedButtonStartClick(Sender: TObject);
 begin
 DDOListener1.Active := True;
 end;

The component offers several events which can be hooked into. The following code snippet

shows one of these handlers which is triggered whenever an exception is raised (which happens

from time to time in our deliberately faulty implementation of TDemoClass.GetQuote):

 procedure TServerMainForm.DDOListener1ClientException(Sender: TObject;
 E: Exception; Method: String);
 begin
 Log(Format('Exception: %s in %s', [E.ClassName, Method]));
 end;

Starting the Demo

Build both projects and start both the client and the server application. If both applications

run on the same machine and port 6666 is available, you can start immediately as those are the

default settings. Otherwise you need to select an appropriate port within the server application and

configure host and port within the client application accordingly. Start the server by clicking the ap-

propriate button.

The server contains a simple form which offers some basic logging facilities, showing the re-

quests and results as they do happen. Note that this slows down the application, so you can turn

logging off. The client application contains several buttons, which will call the corresponding meth-

ods of the proxy and show the received results within a memo.

Implementing Callbacks

Defining the Interface

Again, we do start by defining the interface. Select File|New|Other, select the tabsheet la-

belled 'delphi-online.at' and doubleclick the contained icon (DDOWizard) to run the integrated

wizard. The name of the class we define should be 'ClientSession' and offers three methods:

 procedure LogOn(UserName: String; Password: String);
 procedure LogOff;
 procedure Notification(DateTime: TDateTime; DataString: String);

The most notable difference, compared to the first tutorial, is that the class is tagged to be

'Stateful' and we have selected the procedure Notification being an 'Async Callback' (the difference

between callbacks and async callbacks will be described at the end of this chapter)method.

Stateful does mean, that this object is associated to a specific client. The first time a client invokes

a method of that object, a new instance will be created. Subsequent calls will be handled by this in-

stance; it's exclusively used by that client.

Again we do execute the source code generation. The wizard will generate five new units of

which only two are of interest to us (the remaining three units will be used implicitly). These units

define the classes implementing the interface, a wrapper- and a listener class as well as the pro-

cedural type which defines the callback.

Creating the Client

Again we do start building the client first. Create a new application and construct the main

form's GUI. Select the tabsheet labelled 'delphi-online.at' within the component-palette and drop a

DDORequester on your form. Add the unit uClientSession_Proxy to the project and use it within

the form's code. Note that generated units, which need to be added to the client, always do end

with '_proxy'. Open the unit uClientSession_Proxy.pas and locate the declaration of

TClientSessionProxyStub. Notice the declaration of the property

 property OnNotification: TClientSessionNotification
 read FClientSessionNotification write FClientSessionNotification;

which is an usual event handler. The procedural type can be located within the unit

uClientSessionCallbackListener_Stub.pas and does reflect the parameters we did define within the

wizard. Any time a callback is received by the server, the event handler will be triggered.

Actually there are just a few steps left to finish the client. Firstly we need to create an in-

stance of the TClientSessionProxyStub and destroy it if we are done. We'll do this within the

OnCreate and OnDestroy handler of the form. Next, we need to add an event handler which does

reflect the parameters of TClientSessionNotification and attach it to the instance. Finally, we need

to subscribe at the server in order to receive notifications. This is being done by calling the method

Subscribe. The parameter of Subscribe tells the server on which port we are listening for callbacks.

In case we do provide an value of 0 the DDOListener component will select an appropriate one of

it's own.

 procedure TClientMainForm.FormCreate(Sender: TObject);
 begin
 FClientSession := TClientSessionProxyStub.Create(DDORequester1);
 FClientSession.OnNotification := NotificationReceived;
 end;

 procedure TClientMainForm.FormDestroy(Sender: TObject);
 begin
 FreeAndNil(FClientSession);
 end;

 procedure TClientMainForm.NotificationReceived(Sender: TObject;
 DateTime: TDateTime; Data: String);
 begin
 MemoNotifications.Text := DateTimeToStr(DateTime) + #13#10 + Data;
 end;

 procedure TClientMainForm.ButtonSubscribeClick(Sender: TObject);
 begin
 FClientSession.Subscribe(0)
 end;

You should be aware that the callback will not be executed within the MainThread, so you

should care for synchronization. Although it's not recommended to access VCL components from

within an another than the MainThread the above is safe as setting a Memo's text internally does

use SendMessage which does force a thread context switch. Refer to the Windows API to learn

more about this.

Creating the Server

Create a new application and construct the main form's GUI. Once you are done add the unit

which has been created by the wizard (uClientSession_Stub.pas) to the project and use it within

the form's code. Select the tabsheet labelled 'delphi-online.at' from the component palette and drop

a TDDOListener as well as a TTimer onto the form.

As within the first tutorial do open the unit uClientSession_Stub.pas, copy the template to the

main form's unit and implement the procedures LogOn and LogOff. The class we inherit from -

TClientSession_ActiveStub - already contains the implementation of the procedure Notification

which the server will call in order to notify it's clients.

The code to activate the server and to register the class will be omitted as it's almost identical

to the one already described within the first tutorial.

We still do need to implement the notifications. The listener offers a method called

EnumStubs which does take a class reference, a callback as well as an user defined Integer as it's

parameters. For each stub, which is of the given classtype, the callback (SendQuote) will be

executed once. The stub can be casted to a TClientSession to invoke the method Notification:

 procedure TServerMainForm.SendQuote(Stub: TDDOStubBase;
 UserData: Integer; var Continue: Boolean);
 begin
 Assert(Stub is TClientSession);
 TClientSession(Stub).Notification(Now,
 FQuotes[Random(FQuotes.Count)], nil);
 end;

 procedure TServerMainForm.Timer1Timer(Sender: TObject);
 begin
 DDOListener1.EnumStubs(TClientSession, SendQuote, 0);
 end;

Callbacks and Asynchronous Callbacks

The difference between Callbacks and Asynchronous Callbacks is that the server will be

blocked when executing Callbacks waiting for the client's result. As described within the next tutori-

al, Asynchronous Callbacks will be executed by another thread which will trigger a notification if the

client's result has been received. The notification is optional and can be omitted. If you don't have

special reasons to do so, you should favour asynchronous callbacks over callbacks.

If you did not read the previous tutorials I do advise to do so first, as the remaining ones will

be much more compact and shorter, leaving out some concepts and explanations which have

been discussed before.

Asynchronous Calls

Asynchronous calls differ from callbacks as the result of the call will not be available immedi-

ately but at a later time. As the client should not be blocked waiting for the result, DDObjects will

trigger an appropriate event as soon as the result is available. Therefore it's not necessary to poll

or determine the state of the operation.

The class of this simple example contains only one method which is tagged as being Async.

Actually, this is anything you need to do within the wizard before executing code generation. The

screenshot does show the necessary settings:

If we look at the server code we'll notice that it does not differ from previous examples:

TAsyncDemo = class(TAsyncDemo_Stub)
public
 procedure GetSomeData(ID: Integer; out Data: String); override;
end;

procedure TAsyncDemo.GetSomeData(ID: Integer; out Data: String);
begin
 Data := 'Some Data for ID ' + IntToStr(ID);
 Sleep(Random(5000) + 5000); // simulate some "lengthy" process
end;

The situation will be slightly different within the client. First we'll do have a look into the unit

uAsyncDemo_Proxy.pas which has been generated by the wizard and examine the relevant differ-

ences:

type
 TGetSomeDataEvent = procedure (Sender: TDDOProxyBase;
 GUID: String; Data: String) of object;

 TAsyncDemo = class(TDDOProxyBase)
 ...
 public
 function GetSomeData(ID: Integer;
 Callback: TGetSomeDataEvent): String;
 ...
 end;

At first we'll notice the type TGetSomeDataEvent which incorporates the parameters which

represent the result returned by the server as well as an additional parameter named GUID. The

proxy itself does contain the method GetSomeData as we've defined it within the wizard excluding

the parameters which are part of the server's result as well as an additional parameter of the above

defined TGetSomeDataEvent type. We also notice that, in contrast to other implementations we've

seen so far, the method returns a String.

Let's have a look at the client to see the usage of such an asynchronous call.

procedure TDemoClientMainForm.ButtonAsyncClick(Sender: TObject);
var
 lGUID: String;
begin
 lGUID := FProxy.GetSomeData(Random(99), GetSomeDataCallback);
 AddText(MemoRequests, lGUID);
end;

procedure TDemoClientMainForm.GetSomeDataCallback(Sender: TDDOProxyBase;
 GUID: String; Data: String);
begin
 DelText(MemoRequests, GUID);
 AddText(MemoResults, TimeToStr(Now));
 AddText(MemoResults, ' ' + Data);
end;

The method ButtonAsyncClick invokes the asynchronous call, passes an method pointer

which accords to the definition of TGetSomeDataEvent, namely GetSomeDataCallback, and adds

the returned string to a memo. By this time you already might know about the usage of this value:

it's a GUID which will help us identifying the callback. Please note, that this asynchronous call

might be invoked several times therefore it might be necessary to collate a call within the callback.

For this purpose the callback contains the additional parameter GUID which will be identical to the

GUID which has been returned when invoking the call.

You should be aware that the callback will not be executed within the context of the

application's main thread, so you should care for synchronization unless the property

TDDORequester.Synchronized has been set to true.

Type Rich Exception Handling

In contrast to other remoting systems which do not support a type rich exception handling

which means: all exceptions raised within the server are being reported as e.g. ERemote, therefore

loosing relevant information, DDObjects handles exceptions in it's own way:

Although unknown exceptions will still be raised as EDDORemote, one can register excep-

tion classes so they are known to DDObjects. By default, some of the most common exception

classes are already registered:

• Exception

• EAssertionFailed

• EIntfCastError

• EExternal

• EAccessViolation

• EVariantError

• EAbstractError

• EOSError

• EInvalidCast

• EListError

• EStringListError

• EInvalidOperation

To register custom exceptions invoke DDOExceptionRegistry.RegisterException contained

within the unit DDOExceptions with the exception class to register. The second parameter is a call-

back function which will be invoked to “enrich” the message of an exception before it will be trans-

mitted to the client. E.g. the default registered exception class EOSError defines the following call-

back:

procedure _EOSError(e: Exception; var AMessage: String);
begin
 Assert(e is EOSError);
 AMessage := AMessage + ' ErrorCode: ' + IntToStr(EOSError(e).ErrorCode);
end;

As this registration needs to be done for the server as well as for the client, it might be wise

to embrace this code within a common unit to be included in both applications.

Using Sessions

Sessions are an integral part of DDObjects. You do not need to take any actions or meet any

special conditions to use them within your application. While stateful objects can store client spe-

cific values between different calls, this is not possible using stateless objects. Also there has been

lack of a common way exchanging such values between different objects. Sessions facilitate the

storage and exchange of user specific values between different calls and different server side ob-

jects.

To access the current user's session, the base class for server side objects (DDOStubBase)

offers a protected property Session: TClientSession. The public interface of TClientSession is quite

concise and enables checking for the existence of a given key as well as associating and retrieving

values by key:

 procedure Lock;
 procedure Unlock;
 function Exists(Key: String): Boolean;
 property Value[Key: String]: Variant;
 procedure Clear;

A short code snippet - taken from the demo project - should illustrate the above said. Please note

that the session values are set within the class TDDOSessionLogin and being accessed and used

within the class TDDOSessionTest.

procedure TDDOSessionLogIn.LogIn(UserName, Password: String);
begin
 if Password <> '1234567' then
 raise Exception.Create('Wrong password');
 // set session value(s)
 Session.Value['loggedin'] := True;
 Session.Value['username'] := UserName;
end;

procedure TDDOSessionLogIn.LogOff;
begin
 // set session value(s)
 Session.Value['loggedin'] := False;
end;

procedure TDDOSessionTest.GetData(out AText: String);
begin
 // check session value(s)
 if not Session.Exists('loggedin') or not Session.Value['loggedin'] then
 raise Exception.Create('You are not logged in');
 AText := 'Hello ' + Session.Value['username'] + '!';
end;

A session which has not been used within a configurable amount of time (see property

TDDOListener.SessionTimeOut) will be invalidated and destroyed. DDObjects version 1.1 will en-

able session persistence so invalidated sessions can be resumed at a later time.

Records, Sets and Enumerations

DDObjects offers using native records, sets and enumerations as parameters. Within the

DDOWizard you need to select “Record”, “Set” or “Enumeration” as parameter type and enter the

fully qualified type name (name of the unit which contains the type definition and the name of the

type separated by a dot) as shown within the next screen shot:

The unit will be used by the units generated by the DDOWizard within the client- as well as

within the server code. Therefore it might be wise to embrace the type definitions within a common

unit. Using records, sets or enumerations is not different from using any ordinary type. A short

code snippet - taken from the DUnit tests - should illustrate this:

procedure TDDORemoteRecordTests.TestRecordVar;
var
 lRecord, lCompare: TTestRecord;
begin
 lRecord := GetDefaultRecord;
 Fproxy.TestMethodVar(lRecord); // var param!
 lCompare := EditRecord(GetDefaultRecord);
 CompareRecord(lRecord, lCompare);
end;

Implementing IDDOPersistent

DDObjects supports using objects as parameters of remote calls thus enabling transfer of

more complex structures than provided by using records. This is being facilitated by means of the

interface IDDOPersistent which is defined as follows:

 IDDOPersistent = Interface
 procedure DDOLoadFromStream(Stream: TStream);
 procedure DDOSaveToStream(Stream: TStream);
 end;

Classes which should be transferred by DDObjects need to implement this interface. Besides

of implementing the interface, these classes also need to be registered at DDObjects as shown in

this example taken from the unit DDOPersistentClasses.pas:

 DDOPersistentRegistry.RegisterClass(TDDOPersistentStrings, CreateStrings);

The second parameter is a user supplied function which will be called back by DDObjects if a

new instance of the registered class needs to be created. This is not only being necessary as

TObject doesn't define a virtual constructor but also as the construction could be more complex

e.g. passing additional parameters to the constructor. As this registration is necessary within the

server as well as within the client it might be wise to to embrace this code within a common unit to

be included in both applications.

For convenience two common classes are provided implementing IDDOPersistent:

TDDOPersistentStrings and TDDOPersistentList. To complete this introduction the implementation

of IDDOPersistent within the class TDDOPersistentStrings is being shown here (IFDEFs specific to

Delphi 5 omitted):

procedure TDDOPersistentStrings.DDOLoadFromStream(AStream: TStream);
var
 lSorted, lCaseSensitive: Boolean;
 lDuplicates: TDuplicates;
begin
 AStream.Read(lSorted, SizeOf(Boolean));
 AStream.Read(lDuplicates, SizeOf(TDuplicates));
 AStream.Read(lCaseSensitive, SizeOf(Boolean));
 Sorted := lSorted;
 Duplicates := lDuplicates;
 CaseSensitive := lCaseSensitive;
 LoadFromStream(AStream);
end;

procedure TDDOPersistentStrings.DDOSaveToStream(AStream: TStream);
begin
 AStream.Write(Sorted, SizeOf(Boolean));
 AStream.Write(Duplicates, SizeOf(TDuplicates));
 AStream.Write(CaseSensitive, SizeOf(Boolean));
 SaveToStream(AStream);
end;

Now let's take a look at a very simple example which (again) has been taken from the DUnit

test cases:

As the interface has already been defined, we'll start the wizard and load the file

DDOPersistentTests.xml which can be found within the folder DUnit\generated into the wizard. As

shown within the screenshot, the parameter's type is IDDOPersistent.

As usual we do execute the source code generation and start creating the client and the

server. These steps won't be described within this tutorial again. Please refer to one of the former

tutorials if you are unsure about how to use the TDDOListener or TDDORequester.

Let's have a look at the server code. The class TDDOPersistentTests is a descendent of

TDDOPersistentTests_Stub which has been generated by the wizard before. The code creates an

instance of TDDOPersistentStrings, sets some of it's properties and adds some strings to it.

procedure TDDOPersistentTests.GetStrings(out DDOParam0: TObject);
var
 lStrings: TDDOPersistentStrings;
 i: Integer;
begin
 lStrings := FreeAfterProcessing (TDDOPersistentStrings.Create);
 lStrings.Duplicates := dupError;
 lStrings.Sorted := True;
 for i := 0 to 4 do
 lStrings.Add(IntToStr(i));
 DDOParam0 := lStrings;
end;

Please note the call of FreeAfterProcessing within the above code. As the created instance

has been created locally we do have to destroy it in order to avoid memory leaks. Unfortunately we

can't do this here as we did assign it to the out parameter of the method. Therefore DDObjects

needs to handle this for us after the call has been processed.

Finally let's have a look at the client code:

procedure TDDORemotePersistentTests.TestGetStrings;
var
 lStrings: TDDOPersistentStrings;
begin
 FProxy.GetStrings(TObject(lStrings));
 try
 Assert(lStrings.Duplicates = dupError);
 Assert(lStrings.Sorted = True);
 for i := 0 to 4 do
 Assert(StrToInt(lStrings[i]) = i);
 finally
 lStrings.Free;
 end;
end;

Again, there's nothing special in this code. DDObjects handles the complete task of transfer-

ring the instance from server to client as well as creating a new instance on the client side. The

above code just makes some assertions as it has been taken from the DUnit tests. The call of

FProxy.GetStrings might seem to be a bit unsafe as DDObjects currently does not offer type safety

using IDDOPersistent as it does when using Records, Sets or Enumerations. However, you can

still declare a local variable of type TObject and add a simple assertion as Assert(lTemp is

TDDOPersistentStrings) and using a cast afterwards.

This issue might be addressed in version 1.1 but would need an upgrade of your defined in-

terfaces as well as complete code regeneration so currently I'm not sure if this would be worth the

effort.

Events, Properties and API

This section describes the public properties, event handlers and methods of the most com-

monly used components as well as some utility functions which are part of DDObjects. I would also

like to point out to the DUnit tests which accompany this release. The DUnit tests cover various as-

pects of DDObjects and can be seen as part of the documentation ;-)

TDDOListener

A non visual component to be used within the server application. A TDDOListener listens for

new and handles client connections, cares for the creation and life time management of stubs,

threads and sessions and handles client requests to be executed by concrete stub instances.

Methods

 EnumStubs

Enumerates all instances of a given stub class and calls a user supplied callback for each

active instance. This method is being used in conjunction with callbacks (see tutorial).

 RegisterClass

Registers the given class at the listener.

After registering, remote calls can be executed.

 UnregisterClass

Unregisters the given class at the listener.

Properties

 Active: Boolean

Determines the state of the listener.

Setting this value to true will activate the listener.

 ActiveConnections: Integer

The number of currently active connections (see property Connections)

 ActiveStubs: Integer

The number of currently active stubs.

 ActiveThreads: Integer

The number of currently active threads.

 CheckVersion: Boolean

Compares the version of the proxy which executed a call against the version of the appropri-

ate stub class before processing the request.

 ClassCount: Integer

The number of registered classes (see .property StubClass).

 ClientAccess: TClientAccess

Determines whether client requests will be serialized (caSerialized) or multi threaded

(caMultiThreaded). A value of caSerialized will queue all client requests, processing one after

the other. Setting this value reduces the overall performance and should be avoided.

 Connections[Index: Integer]: TCustomWinSocket

Retrieves the TCustomWinSocket associated with the connection at the given index (see

property ActiveConnections).

This property might become obsolete/protected.

 IdleThreads: Integer

Returns the number of client threads which are currently idle.

 KeepAlive: Boolean

Determines whether the listener will notify the client during processing of a request. Using

this method the client's TimeOut can be extended. This might be used if execution time is not

predictable or is subject to large changes. See also property TDDORequester.TimeOut.

 MaxThreads: Integer

Returns the maximum number of client threads which have been active.

 Port: Integer

Gets/sets the port the Listener is being binded to.

 Requests: Integer

Returns the number of requests the listener has processed.

 SessionTimeOut: Byte

Gets/sets the number of minutes after an inactive session will be discarded.

 StubClass[Index: Integer]: TDDOStubClass

Retrieves the TDDOStubClass at the given index (see property ClassCount).

This property might become obsolete/protected.

 ThreadCacheSize: Integer

Gets/sets the number of client threads which will be cached for later reuse.

 ThreadTimeOut: Byte

Gets/sets the number of minutes after an inactive client thread will be terminated.

 UseSSL: Boolean

Determines whether SSL will be used. This property is currently not used.

Events

 OnActivate procedure(Sender: TObject) of object;

Fired immediately after the listener has become active.

 OnClientException procedure(Sender: TObject; E: Exception; const Method: String) of object;

Fired if an exception has been raised during processing of the given method.

 OnDataEvent procedure(Sender: TObject; Sending: Boolean; var Data: string) of object;

Fired if a request has been received or the result will be sent. The parameter Sending de-

termines whether the data has been retrieved (Sending = False) or is about to be sent

(Sending = True). This event handler might be used for encryption or compression.

 OnDeactivate procedure(Sender: TObject) of object;

Fired immediately before the listener gets deactivated.

 OnRequestProcessed procedure(Sender: TObject; Result: TDDODocument) of object;

Fired after a request has been processed.

 OnRequestReceived procedure(Sender: TObject; Request: TDDODocument) of object;

Fired if a request has been received.

 OnStubCreated procedure(Sender: TObject; Stub: TDDOStubBase) of object;

Fired if a new stub has been created.

This event handler might be used to initialize the stub.

TDDORequester

A non visual component to be used within the client application. A TDDORequester initiates

and handles the communication with the remote server, serializes and transforms requests to be

sent to the server and unserializes and transforms the results as they are being received.

Methods

 Lookup

If connected to a TDDONameServer, this function will lookup the location (remote host and

port) of a given class and returns a new proxy which will connect and send it's requests to

the registered host.

Properties

 Active: Boolean

Determines the state of the requester.

 Cursor: TCursor

The cursor to use during execution of synchronous calls.

 Host: String

The name or IP of the remote host to connect to.

 Port: Integer

The port of the remote host to connect to.

 Requests: Integer

The number of requests which have been sent.

 Synchronized: Boolean

Setting this property to true will force callbacks and responses of asynchronous requests to

be executed within the context of the application's main thread.

 TimeOut: Integer

Determines the number of milliseconds the client will wait to receive the result of a request. If

the result is not being received within that amount of time, the request will be aborted.

 UseSSL: Boolean

Determines whether SSL will be used. This property is currently not used.

Events

 OnActivate procedure(Sender: TObject) of object;

Fired immediately after the requester has become active.

 OnAsyncFailed procedure(Sender: TObject; const GUID: String; E: Exception) of object;

Fired if an asynchronous request failed. Please refer to the tutorial for further details.

 OnDataEvent procedure(Sender: TObject; Sending: Boolean; var Data: string) of object;

Fired if a request has been received or the result will be sent. The parameter Sending de-

termines whether the data has been retrieved (Sending = False) or is about to be sent

(Sending = True). This event handler might be used for encryption or compression.

 OnDeactivate procedure(Sender: TObject) of object;

Fired immediately before the requester gets deactivated.

OnAfterDeactivate procedure(Sender: TObject) of object;

Fired after the requester has been deactivated.

 OnException procedure(Sender: TObject; e: Exception) of object;

Fired if an exception occurred while sending a request and waiting for the result.

 OnExceptionReceived procedure(Sender: TObject; e: Exception) of object;

Fired if the server did send an exception as result of a request.

 OnReceiveData procedure(Sender: TObject; Size, Expected: Integer) of object;

Fired during receiving the result of a request. Depending on the size of the returned result,

the event might be triggered multiple times.

 OnResultReceived procedure(Sender: TObject; Result: TDDODocument) of object;

Fired after a request has been processed and the result has been received.

 OnSendRequest procedure(Sender: TObject; Request: TDDODocument) of object;

Fired immediately before a request will be sent.

TDDODataGrid

A visual component which mimics the style of the grid as seen within the Task Manager. The

DataGrid can display various items which can be configured and labelled accordingly. The drawing

of the curve as determined by the items values will adapt itself to fit the DataGrid's height. Various

visual aspects of the DataGrid as e.g. the background colour can be configured.

Properties

 Active: Boolean

Activates the DataGrid. If active, the DataGrid will update itself periodically.

 DataLines: TDDODataLines

The collection of items which will be displayed within the DataGrid..

 GridPainter: TDDOGridPainter

Configures various visual aspects of the DataGrid.

 Interval: Integer

Determines the amount of time, in milliseconds, that passes before the active DataGrid com-

ponent updates itself and initiates another OnGetData event.

Events

 OnGetData procedure(Sender: TObject; Index: Integer; var Value: Integer) of object;

Occurs when a specified amount of time, determined by the Interval property, has passed.

This event will be called once for each item within the DataLines collection identified by the

parameter Index. The user should supply the value of the current item using the parameter

Value.

TDDOTimer

A non visual component which acts as a replacement for Delphi's TTimer component.

Delphi's TTimer suffers from a shortcoming that could lead to an EOutOfResources if used in multi

threaded environments (e.g. enabling/disabling the timer within the context of different threads).

The events and properties are the same as of TTimer and therefore not listed here.

TDDOThreadStringList

A descendent of TStringList (contained within the unit DDOSystem.pas) which is thread safe.

The methods and properties are the same as of TStringList so they won't be repeated here.

Miscellaneous

Some functions and classes which are of common interest can be found throughout DDOb-

jects. Some of the probably most common ones are listed here:

DDOBase procedure Compress(var Data: String);
procedure Uncompress(var Data: String);
Based on zlib 1.2.3, these procedures ease the compression and de-

compression of a string passed as parameter.

DDOZlib Based on the original file Zlib.pas, which comes with Delphi, this

modified unit has been adapted for zlib 1.2.3

DDOSystem TDDOCriticalSection
Just another wrapper for TRTLCriticalSection with some additional

methods and properties:

procedure CheckEntered;
function TryEnter: Boolean;
property OwningThread: THandle
property RecursionCount: LongInt

function _Hack(AnObject: TObject; Offset: Integer;
 ExpectedClass: TClass = nil): Pointer;
This is the Pandora's Box for each Delphi programmer as it allows ac-

cess to private fields ;-) In order to use the function one needs intim-

ate knowledge about the object which should be accessed.

DDOStringReplace function StringReplace_HV_IA32_1(...

Much faster replacement for Delphi's StringReplace.

DDOFirewall TDDOProtocol = (prUDP, prTCP);
procedure Open(Port: Integer; Protocol: TDDOProtocol);
procedure. Close(...)
function. SafeOpen(...): Boolean;
function. SafeClose(...): Boolean;
function. Allowed(...): Boolean;
Some utility functions to access the Windows Firewall to open and

close specific ports. The procedures Open / Close will raise an excep-

tion on failure, while SafeOpen and SafeClose will return whether the

call has been succeeded.

Command Line Tools

The package contains a set of command line tools which extend some of the functions found

within the wizard. As the wizard won't be available within the personal editions of Delphi 2005 and

2006 you also can invoke it using these command line tools. The tools can be executed via

DDOTools.exe on the command line. The following parameters are available:

-gui Invokes the DDObjects wizard

-l[ist] ip:port Displays available services on specified host

-d[isplay] ip:port name Displays definition of specified service

-c[ode] ip:port name Generates code to access specified service

The following example will connect to a DDOListener running on port 7000 on the host with

the IP 192.168.1.99, import the meta data which defines the available methods of the service

called TestClass. Afterwards code-generation will be triggered in order to generate source files to

be included within your project to access and invoke the service TestClass using a DDORequester

component.

DDOTools -c 192.168.1.99:7000 TestClass

Common Persistent Classes

For convenience two common classes are provided which implement IDDOPersistent and

already have been introduced within the tutorial “Implementing IDDOPersistent”:

TDDOPersistentStrings

This class inherits from TStringList and implements IDDOPersistent. No additional methods

have been added with the exception of the interface implementation. As the documentation is

already provided by Delphi it won't be repeated here. Lookup TStringList to see a list of methods

and properties.

TDDOPersistentList

This class inherits from TList and implements IDDOPersistent. No additional methods have

been added with the exception of the interface implementation. As the documentation is already

provided by Delphi it won't be repeated here. Lookup TList to see a list of methods and properties.

Contribute to DDObjects

Feel free to implement your own classes... what about a TDDOPersistentImage ;-)? If you

like to see your class(es) to be added to DDObjects you can send me an eMail with your source

code. Of course, your name will be included within the list of contributors.

Known Issues

For a most frequent list please locate your browser to

http://www.delphi-online.at/projects/ddobjects/bugs.php

Limitations of the Shareware (unregistered) Version
Beneath the fact that the source code is not included there are no more limitations except the

number of calls to be processed by all listeners within a certain server process. As soon as 10,000

requests have been handled, all DDOListeners will be deactivated. The server needs to be restar-

ted in order to handle new requests.

DDObjects fails to compile in C++ Builder 2006

After opening and building DDObjectsCB2006.bpk you want to build the design time package

dclDDObjectsCB2006.bpk but receive a message similar to the following one:
 [Pascal Fatal Error] DDOBase.pas(174): F1026 File not found: 'DDOZLib.dcu'

After opening the above packages the IDE might have issued a notice that these packages

have been updated to version 10. Unfortunately some of the project options need to be edited

manually. At first, you might want to adjust the output path for both packages as shown in the first

screen shot. Finally you need to add the folder '..\zlib' to the list “Unit search paths”:

After applying these changes, you can rebuild both packages and install the design time package.

http://www.delphi-online.at/projects/ddobjects/bugs.php

Frequently Asked Questions

About DDObjects

What's the difference between remote calls, callbacks, asynchronous calls and asynchron-
ous callbacks?

Remote calls are blocking calls initiated by the client. The client waits until it receives the res-

ult by the server. Asynchronous calls are also initiated by the client. In contrast to remote calls the

client won't wait but an appropriate event will be triggered within the client. Callbacks are blocking

calls initiated by the server which offers an subscribe/unsubscribe mechanism to clients. Asyn-

chronous callbacks are almost identical to callbacks but won't wait for the client. Instead, as it's the

case with asynchronous calls, an appropriate event will be triggered as soon as the server receives

the client's result.

What are stateful and stateless objects?
Stateful objects are associated to a client. The first time a client invokes a method of an ob-

ject, a new instance will be created. Following calls will be handled by this object; it's exclusively

used by that specific client. As a result of that, the object can track these calls and keep relevant

information in it's private fields; it does have a "state". In contrast to this, stateless objects are cre-

ated and destroyed on demand; neither the number of objects can be predicted nor is there any

way to know which instance will execute the clients request.

Installation

I can't install the components within Delphi 2005 Personal Edition.
Delphi 2005 Personal Edition does not have the xmlrtl.dcp file which is required by the

DesignIde package. This means that users of that edition won't be able to compile any design time

package which does require it. The solution is to install a faked xmlrtl.dcp like xmlrtlFAKE.dcp

which contains the two faked units XmlDom and XmlIntf. These two units do not have an

implementation section; their interface section contains only the interface section parts that are

needed by the DesignIde package. With this .dcp file it is possible to use design time packages in

Delphi 2005 Personal Edition. You can download the file at:

http://unvclx.sf.net/other/D2k5PExmlrtlFake.zip

However, within Delphi 2005 Personal Edition the DDOWizard will not be available. Users of this

version can use the command line tools instead which are available since release 0.9.50.

http://unvclx.sf.net/other/D2k5PExmlrtlFake.zip

While building the packages with Delphi 5 I am getting an error L1496.
This is an internal error caused by the Delphi linker which is frequently encountered and not

specific to DDObjects. While doing a complete build will not always succeed, the best is to delete

all DCU-Files before doing so.

While building the packages Delphi complains about a missing entry point.
Probably you already do have an older version of the package installed. You can ignore the

error but don't forget to re-install the components afterwards.

When I try to install the components Delphi notifies me that the package DDObjects.bpl can
not be found.

The design time package tries to load the package DDObjects.bpl but fails to do so. Check

your search path and make sure, the package in answer can be found: either do put it into the

same folder (which is Delphi's default-setting) or make sure your search path does include the

folder where the package resides.

While building the packages or demos with Delphi 5, the compiler tells me that unit
Variants.pas is missing.

I have forgotten to exclude the unit by using the appropriate IFDEF clause. With the advent

of Delphi 6 several routines which deal with variants have been moved from unit System.pas,

which is automatically used by any unit, to Variants.pas. You can safely remove the unit from the

uses-clauses and recompile.

When running the wizard in Delphi 5 it does complain about a property called Designsize.
Shame on me, I have forgotten to check the DFM-files before releasing the build you are us-

ing. Delphi 7 does include them within those files. While that property didn't exist in Delphi 5, the

DFM can not be read. You can open the appropriate DFM-file, locate the lines and safely remove

them to fix the problem.

Programming with DDObjects

All data is being sent over the wire in plain text. Is there any way to encrypt the data?
Yes, there is. Although DDObjects doesn't contain any algorithms for encryption/decryption

on it's own, the DDORequester as well as the DDOListener both offer a suitable event:

OnDataEvent. You can attach an event handler to it, which receives the XML which is about to be

transferred e.g. has been received and encrypt/decrypt it. Be aware that, in order not to block other

threads and events, these events are not being synchronized with the main thread.

Please note that OpenSSL will be supported as of version 1.5, therefore encryption and au-

thentication will be an integral part of DDObjects.

Is there a way to compress the data?
Yes, there is. Check the answer to the question above ("data being send in plain text"). The

same event can be used to compress and decompress the data. For this purpose the unit

DDOBase.pas exposes two functions - Compress and Uncompress - using zlib 1.2.3 which is in-

cluded within DDObjects.

Can I develop using DDObjects on a Windows 98SE PC?
There's one critical API call which won't succeed in Windows 98 - TryEnterCriticalSection (it's

only an empty stub on that OS). To make a long story short: you can develop using DDObjects on

Windows 98SE but running server applications on that OS is not advisable! You can work around

this issue by setting the property ClientAccess of TDDOListener to caSerialized. Using this value

all client calls will be queued and serialized. This will reduce the performance significantly so this

setting should be avoided in production systems.

General Questions

I have encountered a bug.
Please send me a description of the problem and, if possible, some source code which does

expose it. I'll let you know whether I have been able to reproduce it and try to fix it within the next

build. In case it's a basic functionality failure, the bug will be published on the website and handled

with high priority so you can track the state of the bug.

I do have a suggestion.
Great. Please let me know about it and share your thoughts. If it does fit within the concept I'll

try to include it within one of the next builds.

History of Releases

2007-03-26 (1.0.2) Shame on me: I forgot to finish the implementation
of a fix in 1.0.1 introducing an Access Violation if
using asynchronous calls on a synchronized Requester.

2007-03-24 (1.0.1) Fixed a conversion bug if string parameter is empty.
WideStrings supported as parameters type.
Improved reliability of asynchronous calls
(in certain situations - when combining remote
calls and asynchronous calls - a deadlock could
have been easily introduced in GUI applications)
Added an chapter about the usage of the wizard

2007-03-04 (1.0) Demo projects consolidated
Some typos in documentation fixed
Class TProcessTimes renamed
Fixed bug where brc32.exe couldn't be found
Fixed not compiling unit DDODataSet.pas
Added shortcuts to Wizard's GUI

2007-02-12 (0.9.98) Burn-In-Test (48 hours) successfully completed:
 no failures: no Access Violations, no memory leaks.
Documentation completed
Bug fixed in Wizard's GUI
Cleaned up uses clauses
Fixed cache which has not been working correctly

2007-01-27 (0.9.97) Worked around an Delphi memory leak
Fixed an memory leak transferring Exceptions
Fixed a very sporadically occurring AV in async. calls
New property: TDDORequester.Synchronized

2007-01-24 (0.9.96) Fixed an AV within the internal GarbageCollector
Fixed an AV if IDDOPersistent param. has been nil
Fixed using a wrong const within TDDOListener
New event: TDDORequester.OnAfterDeactivate
Updated and extended documentation

2007-01-22 (0.9.95) Added property TDDORequester.Requests
SafeDispose and SafeFreeAndNil removed
 (never encourage sloppy programming *g*)
Added some classes impl. IDDOPersistent
 TDDOPersistentStrings
 TDDOPersistentList
Additional DUnit tests
Documentation extended
Some small bugfixes and enhancements

2007-01-18 (0.9.92) Bugfix in Wizard storing files

2007-01-18 (0.9.91) Fixed bug in source generator (using records in callbacks)
Bug in Wizard (Batch) fixed
First Documentation Draft added
Registered C++ Builder release:
 Packages accidental have been build as trial version

2007-01-10 (0.9.90) Wizard enhanced
Sets and Enumerations supported
Type rich exception handling
Callbacks enhanced (multiple subscriber on stateless objects)
TDDOTimer; corrects a shortcoming of Delphi's TTimer
Bugfixes, DUnit tests added

2007-01-05 (0.9.85) ReadAttributes fixed
Fixed enum values in DDOFirewall
Callbacks enhanced using threads
Included zlib 1.2.3

2007-01-03 (0.9.80) Native support for RecordTypes
Performance considerably increased
Integration of functions contained within the command line tools
Wizard GUI enhanced, bugs fixed
Fixed DDOFirewall (working now)
Annoying bug in DDODocument fixed
Fixed bug using callbacks

2006-12-18 (0.9.70) Property TDDOListener.KeepAlive
Packages for each supported version of Delphi and C++ Builder
 to allow side-by-side install.

2006-12-14 (0.9.66) IDDODocumentHandler updated
Fixed an AV (property UseSSL)
Fixed bug in source generator
TDDOConnectDlg added
GUI tests added

2006-12-14 (0.9.65) Interface IDDODocumentHandler added
C++ Builder 5 discarded

2006-12-10 (0.9.60) C++ Builder 5 and 6 supported
Missing lib files added

2006-12-07 (0.9.51) Smaller fixes
Package files for C++ Builder added

2006-12-06 (0.9.50) Delphi 2006 (Win32) supported
Support for C++ Builder 2006
Data types Real48 and Comp discarded
Installation issue (wizard) fixed
Command line tools added
New feature added: Sessions
DUnit test cases added
GUI of DDOWizard enhanced
Issue reg. CRLF in string fixed
Bug in Demo fixed
Several other enhancements

2006-04-06 (0.9.14) Implementation TDDOBroker finished
AVs within async. callbacks fixed
Sender for async. callback events added
Several minor enhancements

2006-02-27 (0.9.13) Delphi 2005 supported
New component: TDDONameServer

2006-02-27 (0.9.12) Performance considerably increased
Memory leak in TDDOStubBase fixed
Server statistics reworked and integrated within demos
Some small bugfixes and enhancements

2006-02-25 (0.9.11) Asynchronous callbacks supported
Issue reg. growing handles and in
 adequate memory consumption fixed
Bug in source code generator for async.
 calls without parameters fixed
Events of async. calls are now
 synchronized with the main thread
Renamed to DDObjects; classes, types
 unit names etc. changed accordingly
Some minor enhancements

2006-02-22 (0.9.10) TRemBroker extended
New interface IRemPersistent
Asynchronous calls supported
New component TRemProgressBar
Multi threading enhanced

2006-02-20 (0.9.09) New component TRemDataGrid
GUI of demos enhanced

2006-02-19 (0.9.08) New component and demo: TRemBroker
Severe bug in RemSrcGen.pas fixed
Subscribe/Unsubscribe for callbacks

2006-02-17 (0.9.07) Removed modified unit ScktComp.pas

2006-02-17 (0.9.06) Batch compile (Wizard extended)
Delphi 5 supported

2006-02-16 (0.9.05) Callbacks have been added

2006-02-13 (0.9.00) First public release

Final Notes

Performance, Delphi and it's MemoryManager

As Delphi's default MemoryManager is known to scale bad in multithreaded environments

and suffers from memory fragmentation I recommend using FastMM as MemoryManager replace-

ment at least for server applications build with DDObjects. Note that Borland has replaced Delphi's

MemoryManager by FastMM since Delphi 2005.

FastMM can be downloaded at SourceForge.net:

http://sourceforge.net/projects/fastmm/

Currently nothing else remains to say but

Enjoy! ;-)

http://sourceforge.net/projects/fastmm/

	Introduction
	DDObjects supports
	Contributors

	Installation
	System Requirements
	Shareware Version without Sources
	Registered Version incl. Sources

	Tutorials and Implementation
	DDO Wizard
	First Steps
	Defining the Interface
	Generating Sources
	Creating the Client
	Creating the Server
	Starting the Demo

	Implementing Callbacks
	Defining the Interface
	Creating the Client
	Creating the Server

	Callbacks and Asynchronous Callbacks
	Asynchronous Calls
	Type Rich Exception Handling
	Using Sessions
	Records, Sets and Enumerations
	Implementing IDDOPersistent

	Events, Properties and API
	TDDOListener
	Methods
	Properties
	Events

	TDDORequester
	Methods
	Properties
	Events

	TDDODataGrid
	Properties
	Events

	TDDOTimer
	TDDOThreadStringList
	Miscellaneous
	Command Line Tools

	Common Persistent Classes
	TDDOPersistentStrings
	TDDOPersistentList
	Contribute to DDObjects

	Known Issues
	Limitations of the Shareware (unregistered) Version
	DDObjects fails to compile in C++ Builder 2006

	Frequently Asked Questions
	About DDObjects
	Installation
	Programming with DDObjects
	General Questions

	History of Releases
	Final Notes
	Performance, Delphi and it's MemoryManager

